ALGEBRAIC TIME DECAY FOR THE BIPOLAR QUANTUM HYDRODYNAMIC MODEL

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors

Abstract: In this paper, we consider an isentropic Euler-Poisson equations for the bipolar hydrodynamic model of semiconductor devices, which has a non-flat doping profile and insulating boundary conditions. Using a technical energy method and an entropy dissipation estimate, we present a framework for the large time behavior of time-increasing weak entropy solutions. It is shown that the weak ...

متن کامل

ar X iv : 0 81 1 . 37 90 v 1 [ m at h - ph ] 2 4 N ov 2 00 8 Algebraic time - decay for the bipolar quantum hydrodynamic model ∗

The initial value problem is considered in the present paper for bipolar quantum hydrodynamic model for semiconductors (QHD) in R. We prove that the unique strong solution exists globally in time and tends to the asymptotical state with an algebraic rate as t → +∞. And, we show that the global solution of linearized bipolar QHD system decays in time at an algebraic decay rate from both above an...

متن کامل

Exponential decay in time of solutions of the viscous quantum hydrodynamic equations

The long-time asymptotics of solutions of the viscous quantum hydrodynamic model in one space dimension is studied. This model consists of continuity equations for the particle density and the current density, coupled to the Poisson equation for the electrostatic potential. The equations are a dispersive and viscous regularization of the Euler equations. It is shown that the solutions converge ...

متن کامل

N ov 2 00 8 Semiclassical and relaxation limits of bipolar quantum hydrodynamic model ∗

The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for semiconductors are investigated in R. We prove that the unique strong solution converges globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of semiclassical limit and to that of the classical Drift-Diffusion system under the combined relaxation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Models and Methods in Applied Sciences

سال: 2008

ISSN: 0218-2025,1793-6314

DOI: 10.1142/s0218202508002887